McCullough, J. D. (1977). Inorg. Chem. 16, 2318-2321.
McCullough, J. D. \& Knobler. C. (1976). Inorg. Chem. 15, 27282731.

McCullough, J. D., Knobler, C. \& Ziolo, R. F. (1985). Inorg. Chem. 24, 1814-1818.
McWhinnie, W. R. \& Monsef-Mirzai, Z. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Setenium and Tellurium Compounds, edited by F. J. Berry \& W. R. McWhinnie, pp. 3-31. University of Aston in Birmingham, England.
Mangion, M. M., Zingaro, R. A. \& Meyers, E. A. (1975). Chem. Scr. 8A, 45-50.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Petragnani, N. \& de Moura Campos, M. (1961). Chem. Ber. 94. 17591762.

Sadekov, I. D. \& Maksimenko, A. A. (1981). Zh. Org. Khim. 17, 204-205.
Sadekov, I. D., Maksimenko, A. A., Rivkin, B. B. \& Minkin, V. I. (1989). Zh. Obshch. Khim. 59. 2015-2021.

Sadekov, I. D., Usachev, A. I. \& Minkin, V. I. (1978). Zh. Obshch. Khim. 48, 475-476.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick. G. M. (1993). SHELXL93. Program for the Refinement of Cṛistal Structures. University of Göttingen, Germany.
Shoemaker, C. B. \& Abrahams, S. C. (1965). Acta Crist. 18. 296.
Spek, A. L. (1993). PLUTON93. Program for the Display and Analysis of Crystal and Molecular Structures. University of Utrecht, The Netherlands.
Spek, A. L. (1994). PLATON94. Program for the Automated Analysis of Molecular Geometry. University of Utrecht. The Netherlands.
Ziolo, R. F. \& Troup, J. M. (1983). J. Am. Chem. Soc. 105. 229-235.
Zsolnai, L. \& Pritzkow, H. (1995). ZORTEP. ORTEP Program for Silicon Graphics. University of Heidelberg. Germany.

Acta Cryst. (1998). C54, 1000-1003

3,4,4a,5,6,7,8,8a-Octahydro-8a-hydroxy-2-quinolone and its 8a-Hydroperoxy Derivative

Stefano Allni, Attlio Citterio, Alessandra Farina, Maria Cristina Fochi and Luciana Malpezzi*

Dipartimento di Chimica, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy: E-mail: luci@indigo. chem.polimi.it
(Received 1 July 1997; accepted 26 January 1998)

Abstract

The crystal structures of the title compounds, $3,4,4 \mathrm{a}, 5,6,-$ 7,8,8a-octahydro-8a-hydroxy-2-quinolone [$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$, (I)] and 3,4,4a,5,6,7,8,8a-octahydro-8a-hydroperoxy2 -quinolone $\left[\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}\right.$, (II)], show a trans- and a cis-fused-ring configuration, respectively, with the cyclohexane rings in a chair conformation in both compounds. In (I), the molecules are linked about 2_{1}

axes via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming an infinite helix; further $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions result in a two-dimensional hydrogen-bond network. In (II), the molecules form centrosymmetric dimers via pairwise $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions, and these dimers are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, giving infinite parallel chains.

Comment

Recently, we reported an efficient new procedure for the synthesis of 6 -hydroxy-3,4,5,6-tetrahydro-2-pyridones and 6 -hydroperoxy-3,4,5,6-tetrahydro-2-pyridones, by hydration-cyclization of δ-ketonitriles with basic hydrogen peroxide (Citterio et al., 1997). The first class of compounds are useful intermediates in acyliminium chemistry (Murahashi et al., 1993), whereas the latter are quite stable hydroperoxides. Applied to 2-(2-cyanoethyl)cyclohexanone, this procedure affords compounds (I) and (II) as a mixture of the corresponding cis and trans isomers. The stereochemistry of (I) and (II) was

(I)

(II)
difficult to elucidate by NMR spectroscopy, and in order to confirm their identity and to determine the relative stereochemistry, an X-ray structural investigation was carried out on pure epimers obtained by selective crystallization. In both compounds, the cyclohexane ring adopts a chair conformation. The ring fusion in (I) is trans, with a torsion angle $\mathrm{O} 2-\mathrm{C}-\mathrm{C} 10-\mathrm{H} 10$ of $176.9(10)^{\circ}$ and with the hydroxy substituent in an axial position, which is the only conformation possible for this compound (Fig. 1). In (II), the two rings have a cisfused stereochemistry, with a torsion angle $\mathrm{O} 2-\mathrm{C} 9-$ C10-H10 of $54.9(12)^{\circ}$ and the hydroperoxy group in an equatorial position. Within the piperidone rings of both compounds, the carbonyl and the $\mathrm{N}_{s p^{2}}$ groups are nearly coplanar [r.m.s. deviations are 0.045 and $0.021 \AA$ for (I) and (II), respectively], with the C4 and C10 atoms lying below and above the least-squares mean planes, respectively. Bond distances and angles in both compounds are in agreement with the expected values, with the exception of the bond angles around atoms C 9 and C 10 , where significant deviation from $\mathrm{C}_{s p^{2}}$ geometry is observed (Tables 1 and 3), probably due to the different ring junctions. The conformation around the C9-O2 bond is approximately gauche. The value of the torsion angles $\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$ for (I) and $\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2-\mathrm{O} 3$ for (II) are, respectively, $-46.0(13)$ and $-57.31(16)^{\circ}$, slightly smaller than those reported for a similar structural motif $\left(64-67^{\circ}\right)$ in the

Cambridge Structural Database (Allen et al., 1983). The antiperiplanar orientation of the $\mathrm{C}-\mathrm{N}$ bond relative to the O -atom lone pair seems to be related to the anomeric effect associated with the $\mathrm{N}-\mathrm{C}-\mathrm{O}$ linkage and to the $n \rightarrow \sigma^{*}$ molecular-orbital interaction involving the heteroatom lone pair and the vacant $\mathrm{C}-\mathrm{N}$ or $\mathrm{C}-\mathrm{O}$ antibonding orbital (Deslongchamps, 1983; Salzner \& Schleyer, 1994).

Fig. 1. View of molecule (I), showing the atom-labelling scheme. Displacement ellipsoids are plotted at the 20% probability level, while the H atoms are of an arbitrary size.

Fig. 2. View of molecule (II), showing the atom-labelling scheme. Displacement ellipsoids are plotted at the 20% probability level, while the H atoms are of an arbitrary size.

As regards crystal packing, amide groups are known to afford hydrogen-bonded dimers or chains (Berkovitch-Yellin \& Leiserowitz, 1983). The structures of (I) and (II) show two different hydrogen-bonding topologies. In both structures, the carbonyl O atoms are bifurcated acceptors of hydrogen bonds, while the hydroxyl O atoms act only as hydrogen-bond donors. In (I), each molecule is linked via intermolecular N $\mathrm{H} \cdots \mathrm{Ol}$ hydrogen bonds to two neighbours related to it by a 2_{1} screw axis, forming an infinite helix along \mathbf{b} (see Fig. 3). The chains are themselves cross-linked by $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O} 1$ interactions between the carbonyl and the hydroxyl O atoms, into an infinite two-dimensional network extending parallel to the $b c$ plane. No hydrogen bonds are present between these layers. According to the Etter notation (Etter et al., 1990), the chain hydro-gen-bond motif may be designated as $C(4)$ and the interchain hydrogen-bond pattern (ring motif) as $R_{2}^{2}(12)$. In
the crystals of (II), each molecule is linked to a single neighbour, related to it by a centre of symmetry, via two mutual $\mathrm{N}-\mathrm{H} \cdots \mathrm{Ol}$ hydrogen bonds, forming a planar eight-membered pseudo-cycle [graph set $R_{2}^{2}(8)$] (Fig. 4). Further $\mathrm{O} 3-\mathrm{H} \cdots \mathrm{O} 1$ interactions result in infinite parallel chains of dimers along the a axis [graph set $R_{4}^{2}(14)$]. The overall hydrogen-bonding network may account for the high stability of compound (II), which decomposes only at its melting point (413 K) and is stable for years at 298 K .

Fig. 3. Packing arrangement of (I) viewed along the b axis, showing the hydrogen-bond system (dashed lines).

Fig. 4. Packing arrangement of (II) viewed along the b axis, showing the hydrogen-bond system (dashed lines)

Experimental

The title compounds were prepared according to the procedure published by Citterio et al. (1997). Crystals of (I), suitable for X-ray diffraction analysis, were obtained by crystallization of a 97:3 epimer mixture from ethyl acetate, whereas crystals of (II) were obtained by double crystallization of a 45:55 epimer mixture from methanol.

Compound (I)

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$
$M_{r}=169.22$
Monoclinic
$P 2_{1} / c$
$a=14.574$ (8) \AA
$b=6.5096(16) \AA$
$c=10.103(5) \AA$
$\beta=109.82$ (4) ${ }^{\circ}$
$V=901.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.247 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\theta / 2 \theta$ scans
Absorption correction: none
2231 measured reflections
1604 independent reflections 1497 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.027$

Refinement

Refinement on $F^{2} \quad(\Delta / \sigma)_{\text {max }}=0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.107$
$S=1.070$
1604 reflections
138 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0524 P)^{2}\right.$
$+0.2042 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 24 reflections
$\theta=22-38^{\circ}$
$\mu=0.710 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Trigonal prism
$0.60 \times 0.50 \times 0.40 \mathrm{~mm}$ Colourless

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$ for (I)

$\mathrm{O} 1-\mathrm{C} 2$	$1.2483(16)$	$\mathrm{O} 2-\mathrm{C} 9$	$1.4175(16)$
$\mathrm{N}-\mathrm{C} 2$	$1.3341(17)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.5286(18)$
$\mathrm{N}-\mathrm{C} 9$	$1.4624(17)$		
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9$	$125.64(11)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$112.17(11)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$115.75(11)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$110.62(12)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$105.55(11)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$114.13(13)$
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 2-\mathrm{C} 3$	$11.37(19)$	$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9-\mathrm{C} 8$	$-153.35(1.3)$
$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-13.97(19)$	$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2$	$91.28(15)$
$\mathrm{O} 2-\mathrm{C}-\mathrm{C}-\mathrm{C} 10-\mathrm{H} 10$	$176.9(10)$	$\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	$-46.0(13)$

Table 2. Hydrogen-bonding geometry ($\AA,^{\circ}$) for (I)

$D-\mathrm{H} \cdots A$	D-H	H. . . A	D. . A	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{Ol}^{\prime}$	0.94 (2)	1.89 (2)	2.826 (2)	172 (2)
N-HIN. . O1"	0.85 (2)	2.14 (2)	2.989 (2)	178(2)

Compound (II)

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=185.22$
Monoclinic
$P 21 / c$
$a=6.9120(10) \AA$
$b=10.905$ (2) \AA
$c=12.848$ (2) \AA
$\beta=102.620(10)^{\circ}$
$V=945.0(3) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 36 reflections
$\theta=15-40^{\circ}$
$\mu=0.806 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.60 \times 0.30 \times 0.20 \mathrm{~mm}$
Colourless
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Siemens $P 4$ diffractometer
$\theta_{\text {max }}=68.97^{\circ}$
$\theta / 2 \theta$ scans
$h=-1 \rightarrow 7$
Absorption correction: none
2366 measured reflections
1685 independent reflections
1370 reflections with
$k=-13 \rightarrow 1$
$l=-15 \rightarrow 15$
3 standard reflections every 200 reflections
$I>2 \sigma(I)$ intensity variation: $<0.3 \%$
$R_{\text {int }}=0.035$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w \cdot R\left(F^{2}\right)=0.127$
$S=1.021$
1685 reflections
143 parameters
H atoms: see below
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0665 P)^{2}\right.$ $+0.2071 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0096 (14)

Scattering factors from International Tables for Crustallography (Vol. C)

Table 3. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (II)

$\mathrm{O} 1-\mathrm{C} 2$	$1.247(2)$	$\mathrm{N}-\mathrm{C} 2$	$1.333(2)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.441(2)$	$\mathrm{N}-\mathrm{C} 9$	$1.451(2)$
$\mathrm{O} 2-\mathrm{O} 3$	$1.4599(17)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.531(2)$
$\mathrm{C} 9-\mathrm{O} 2-\mathrm{O} 3$	$109.16(12)$	$\mathrm{O} 2-\mathrm{C}-\mathrm{C} 10$	$103.27(12)$
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9$	$126.27(14)$	$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 10$	$112.79(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$115.91(15)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5$	$112.16(16)$
$\mathrm{O} 2-\mathrm{C}-\mathrm{C} 8$	$110.62(14)$		
$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2$	$-86.8(2)$	$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 9-\mathrm{C} 8$	$151.30(17)$
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 2-\mathrm{C} 3$	$-3.8(3)$	$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	$-54.9(12)$
$\mathrm{N}-\mathrm{C}-\mathrm{C} 3-\mathrm{C} 4$	$8.2(3)$	$\mathrm{N}-\mathrm{C} 9-\mathrm{O} 2-\mathrm{O} 3$	$-57.31(16)$

Table 4. Hydrogen-bonding geometry ($\left(\AA^{\circ}\right)$ for (II)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{O} \cdots \mathrm{Ol}$	$1.02(3)$	$1.71(3)$	$2.718(2)$	$171(2)$
$\mathrm{N}-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Ol}^{\prime \prime}$	$0.84(2)$	$2.13(2)$	$2.953(2)$	$169(2)$

Symmetry codes: (i) $1+x, y, z ;$ (ii) $1-x,-y, 1-z$.
H atoms were located from difference Fourier maps and refined using a riding model; the positions of the $\mathrm{N}-\mathrm{H}, \mathrm{O}-\mathrm{H}$ and $\mathrm{C} 10-\mathrm{H}$ H atoms were refined freely.

For both compounds, data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SIR92 (Altomare et al., 1994): program(s) used to refine structures: SHELXL97 (Sheldrick. 1997); molecular graphics: SHELXTL/PC (Sheldrick,
1990); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BMI184). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16. 146-153.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Berkovitch-Ycllin, Z. \& Leiserowitz, L. (1983). J. Am. Chem. Soc. 105, 765-767.
Citterio, A., Carnevali, E., Farina, A., Merle, S. V., Alini, S. \& Cotarca, L. (1997). Org. Prep. Proc. Int. 29, 465-470.
Deslongchamps, P. (1983). In Stereoelectronic Effects in Organic Chemistry. Oxford: Pergamon Press.
Enter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Murahashi, S. I.. Sasao, S., Saito, E. \& Naota, T. (1993). Tetrahedron, 49, 8805-8826.
Salzncr, U. \& Schleyer, P. V. R. (1994). J. Org. Chem. 59, 2138-2155.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Götingen, Germany.
Siemens (1994). XSCANS. X-ray Single Crystal Analysis System. Version 2.0. Siemens Analytical X-ray Instruments Inc., Madison. Wisconsin. USA.

Acta Cryst. (1998). C54, 1003-1004

Structures of Chiral Hydroxylamines. VI. (3R,4S)-N-Benzyl-4,5-dihydroxy-3-(hydroxyamino)-4,5-O-isopropylidene-1pentane \dagger

Pedro Merino, Francisco L. Merchan, Tomas Tejero and Santiago Franco

Departamento de Quimica Organica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza, E-50009
Zaragoza, Spain. E-mail: pmerino@posta.unizar.es
(Received 7 October 1997; accepted 23 January 1998)

\author{
Abstract
 The structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}$, confirms the crystal structure previously assigned on the basis of chemical evidence. The packing in the crystal
 [^0]}
is influenced by an intermolecular hydrogen-bond interaction [O—H. . O 2.841 (2) A].

Comment

In order to prepare new building blocks useful in developing a new method for the synthesis of optically pure allylamines, we described a procedure in which the chiral nitrone, (I), was used (Merino, Anoro et al., 1996). In two steps, compound (I) was transformed into propargyl hydroxylamine, (II), a key intermediate not only in the synthesis of allylamines, but also in the preparation of N-hydroxy α-amino acids (Merino et al., 1997).

The stereochemistry of the title hydroxylamine, (II), was determined on the basis of chemical evidence, by transformation into the corresponding 1,3-oxazolidin2 -one. The present structural determination serves to confirm the previously assigned syn stereochemistry between the substituents attached to atoms C 3 and C 4 .

The molecular geometry and numbering scheme are shown in Fig. 1. Bond distances and angles are in good agreement with the values reported for related chiral hydroxylamines (Merino et al., 1995; Merino, Junquera et al., 1996). The absolute configuration of (II) was not determined, since the configuration of the starting nitrone, (I), was known to be S (Dondoni et al., 1994). The torsion angles given in Table 1 show the configuration at the newly-formed C3 chiral center to be R.

Fig. 1. The molecular structure of (II), showing the atom numbering. Displacement ellipsoids are shown at the 30% probability level.

[^0]: \dagger Alternative name: N-benzyl- N-[1-(2,2-dimethyl-1,3-dioxolan-4-yl)-prop-2-ynyl]hydroxylamine.

